JSR 363

Third meeting



Agenaa

Spec doc: review, comments and changes

Issue tracking (JAVA.NET or GITHUB?)

Rl and SE impl: items that need pruning, or how
close are we to the final implementation

Anatole's blog post about JSR363

Public participation/hackatons


http://JAVA.NET

Spec Document

Current version is located at https://github.com/
unitsofmeasurement/unit-api/blob/master/src/main/
asciidoc/jsr363.adoc

Make it a PDF available to download at java.net?

Continue to use asciidoc?

Do we have a clear understanding about what are
going to be in the RI, what already is and what are
the extension points?


http://java.net

Comments

Martin raised concern about including Measurement,
Jean-Marie agreed, mentioned JSR275 problems

Martin raised the current Measurement doesn’t work
very well

Werner suggested keeping Measurement simple,
moving operations from Measurement to Quantity

Martin agrees on keeping arithmetic in Quantity

Martin suggests that Measurement only have getUnit()



Comments

 Martin and Werner to produce a link and html page
for current Spec Doc

* we should raise a Jira issue about spec doc <> Rl
differences



Issue Tracking

* JIRA or GITHUB?

* \We have open tickets in both, and to get better
participation, we need to focus. So, let's focus on
JIRA"?



Comments

* Keep everything in Jira
e Try and shutdown issue tracking in GitHub

e (Otavio raised that Github would be best, Leo asked
to try at least going Jira only



Rl and SE implementation

* Current action points in JIRA

* Current action points in GITHUB

e Stripping



Anatole’s blog post

* Posted at http://javaremarkables.blogspot.com.br/
2014/06/jsr-363-unit-of-measurement-api-first.html

« Comments by Anatole, Werner and Heiko

- Did we capture those as tickets????


http://javaremarkables.blogspot.com.br/2014/06/jsr-363-unit-of-measurement-api-first.html

Anatole’s blog post

- | think the API requires some entry point, e.g. in form
of a singleton to make it complete. Basically a
programmer should be able to program against the
APl without having to know any details on the
implementations.

| like the idea, and agree with him but...

 Can we do this in a portable ME/SE way, using Service
Loader? Would that break in ME without Service

Loader? Can we detected the presence and register
or not? And OSGi”?



Comments

* Jean-Marie suggestion so that we'd be inspired by
javolution on OSGi support with private/non-exported
service factories for non-OSGi environment, and
OSGi service loader support would be implemented
by a bundle

* This would address Anatole’'s concern.
 We'd need a specific package for tactories interfaces

(public in OSGiI) and a specific package for the static
factory access methods (private in OSGi)



Anatole’s blog post

- Quantity / Measurement reasoning

 Werner states some reasoning behind the way
artefacts are laid out. Should we provide an
explanation page or enhance the Spec Doc?



Public participation
* Can we get Soudava to get someone (not Otavio) who’s unfamiliar
to try and contribute to the project as a test of our infrastructure”
* |s it easy for outsiders to compile and run our project?
* Should we prepare a “how to contribute to this project” page”
* Again, what do we need from them?
* Use cases”

e Test cases”?

o ActyalRHSEcode? (this bFngS 1D G@HSid@FBH@HS)



Comments

* Bruno said that “how to contribute™ page is nice to have
* List all tems we'd need, despite having a nice infrastructure
* Present this list in events so that they can start in easy stuff
* “Just list the things that need to be done”

* have a page up describing when/what the hackaton would be
* have this in the registration page, ask for use cases - “do

you have any units and measurements in your application”
use units to present values, <list instead of open question>"



