
JSR 363
Third meeting



Agenda
• Spec doc: review, comments and changes 

• Issue tracking (JAVA.NET or GITHUB?) 

• RI and SE impl: items that need pruning, or how 
close are we to the final implementation 

• Anatole's blog post about JSR363 

• Public participation/hackatons

http://JAVA.NET


Spec Document
• Current version is located at https://github.com/

unitsofmeasurement/unit-api/blob/master/src/main/
asciidoc/jsr363.adoc 

• Make it a PDF available to download at java.net? 

• Continue to use asciidoc? 

• Do we have a clear understanding about what are 
going to be in the RI, what already is and what are 
the extension points?

http://java.net


Comments
• Martin raised concern about including Measurement, 

Jean-Marie agreed, mentioned JSR275 problems 

• Martin raised the current Measurement doesn’t work 
very well 

• Werner suggested keeping Measurement simple, 
moving operations from Measurement to Quantity 

• Martin agrees on keeping arithmetic in Quantity 

• Martin suggests that Measurement only have getUnit()



Comments

• Martin and Werner to produce a link and html page 
for current Spec Doc 

• we should raise a Jira issue about spec doc <> RI 
differences



Issue Tracking

• JIRA or GITHUB? 

• We have open tickets in both, and to get better 
participation, we need to focus. So, let’s focus on 
JIRA?



Comments

• Keep everything in Jira 

• Try and shutdown issue tracking in GitHub 

• Otávio raised that Github would be best, Leo asked 
to try at least going Jira only



RI and SE implementation

• Current action points in JIRA 

• Current action points in GITHUB 

• Stripping



Anatole’s blog post

• Posted at http://javaremarkables.blogspot.com.br/
2014/06/jsr-363-unit-of-measurement-api-first.html 

• Comments by Anatole, Werner and Heiko 

• Did we capture those as tickets????

http://javaremarkables.blogspot.com.br/2014/06/jsr-363-unit-of-measurement-api-first.html


Anatole’s blog post
• I think the API requires some entry point, e.g. in form 

of a singleton to make it complete. Basically a 
programmer should be able to program against the 
API without having to know any details on the 
implementations.!

• I like the idea, and agree with him but… 

• Can we do this in a portable ME/SE way, using Service 
Loader? Would that break in ME without Service 
Loader? Can we detected the presence and register 
or not? And OSGi?



Comments
• Jean-Marie suggestion so that we’d be inspired by 

javolution on OSGi support with private/non-exported 
service factories for non-OSGi environment, and 
OSGi service loader support would be implemented 
by a bundle 

• This would address Anatole’s concern. 

• We’d need a specific package for factories interfaces 
(public in OSGi) and a specific package for the static 
factory access methods (private in OSGi)



Anatole’s blog post

• Quantity / Measurement reasoning!

• Werner states some reasoning behind the way 
artefacts are laid out. Should we provide an 
explanation page or enhance the Spec Doc?



Public participation
• Can we get SouJava to get someone (not Otávio) who’s unfamiliar 

to try and contribute to the project as a test of our infrastructure? 

• Is it easy for outsiders to compile and run our project? 

• Should we prepare a “how to contribute to this project” page? 

• Again, what do we need from them? 

• Use cases? 

• Test cases? 

• Actual RI/SE code? (this brings IP considerations)



Comments
• Bruno said that “how to contribute” page is nice to have 

• List all items we’d need, despite having a nice infrastructure 

• Present this list in events so that they can start in easy stuff 

• “Just list the things that need to be done” 

• have a page up describing when/what the hackaton would be 

• have this in the registration page, ask for use cases - “do 
you have any units and measurements in your application? 
use units to present values, <list instead of open question>”


